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ABSTRACT 
 

DEPOSITIONALLY-INDUCED MAGNETIC FREQUENCY VARIATIONS OF A 
SANDSTONE FACIES OF THE COPPER HARBOR CONGLOMERATE FROM THE 

NORTH AMERICAN, MID-CONTINENT RIFT AT UNION BAY, MICHIGAN 
 

by 
 

Elizabeth Anne Borucki 
 
 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Dr. Julie Bowles 

 

 

 The Mesoproterozoic, Copper Harbor Conglomerate Sandstone Facies of Union Bay, 

Michigan was investigated to determine whether fluvial red beds from deep time can maintain 

magnetic variations related to deposition.  Additionally, the possibility that magnetic variations 

represent astronomically forced climate cycles was also explored at this site.  The study utilized 

environmental magnetism and cyclostratigraphic techniques.  The magnetic mineralogy was 

characterized using temperature dependent susceptibility, isothermal remanent magnetization, 

and anisotropy of magnetic susceptibility to determine composition, approximate grain size, 

abundance, and magnetic shape and orientation.  For a partial cyclostratigraphic study, 

sequential, outcrop based magnetic susceptibly measurements were taken stratigraphically every 

0.47 m on average, over 56.4 m.  Fine-grained magnetite and hematite were inferred from 

laboratory measurements, and the assemblage of magnetic grains were determined to be 

primarily prolate.  The magnetic fabric agreed with previous paleocurrent field observations at 

the site, with a flow directionality towards the northwest, suggestive that susceptibility correlates 

with depositional orientation.  Hematite concentration was determined to control susceptibility, 

and fluctuations in its abundance were observed to be related to physical outcrop properties.  
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High susceptibility corresponded with physically larger grain sizes and was associated with 

cross-bedding, meanwhile low susceptibility was attributed to physically smaller grain sizes as 

well as erosional and color boundaries.  A statistically-significant periodic susceptibility signal 

was observed approximately every 2 m from the stratigraphy.  The cyclicity of the signal 

suggests that susceptibility variations may arise from climatically-induced variations in 

depositional or post-depositional processes.  Due to the uncertainty in the positioning of this 

section in absolute time, our study precludes a relationship between the observed periodic signal 

and astronomically forced climate cycles.  However, the ability to isolate a cyclical signal in 

these deep time, fluvial red beds suggest that Precambrian deposits are potential candidates for 

full cyclostratigraphic studies provided there are fewer unknowns related to absolute depositional 

timescales.  
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CHAPTER 1. INTRODUCTION 

 

1.1 General Introduction 

 

Magnetic properties of rocks and sediments are used to study a wide variety of geologic 

processes, such as geomagnetic field variations, tectonic reconstructions, and 

paleoenvironmental variations (Dekkers, 2001).  Magnetostratigraphy is a common application 

that involves using geomagnetic polarity reversals to constrain absolute timescales in the 

stratigraphic record.  Because polarity reversals happen so infrequently and irregularly (on time 

scales of tens of thousands to millions of years), temporal resolution is necessarily low.  By 

contrast, environmental magnetism concerns itself with higher frequency variations such as 

orientation, concentration, and variability of iron-bearing minerals in relation to fluctuations in 

the depositional record (Liu et al., 2012).  Climatically-driven depositional variations in 

magnetic properties can sometimes be linked to well-recognized orbital frequencies ranging from 

tens to hundreds of thousands of years.  When the cyclic data are combined with the 

magnetostratigraphy, it may be possible to establish higher resolution timescales within an 

absolute time interval.  The combination of these two areas of study is known as 

magnetocyclostratigraphy.   

For example, a study conducted by Kodama et al. (2010) developed a 

magnetostratigraphy using thermal demagnetization data that established several absolute time 

tie points for a section of the Eocene age, Arguis Formation in the Spanish Pyrenees.  

Stratigraphic variations in the concentration of magnetic minerals was assessed at high resolution 

using anhysteretic remanent magnetization (ARM) measurements.  An initial, un-tuned spectral 
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analysis of the ARM data revealed seven significant peaks at 0.012 m-1, 0.019 m-1, 0.033 m-1, 

0.068 m-1, 0.179 m-1, 0.190 m-1, and 0.211 m-1 within their measured stratigraphic section 

(Kodama et al., 2010).  It was determined, using the average accumulation rate, that these peaks 

represented time intervals close to those of orbital variations of short eccentricity (80-125 kyr) 

and long eccentricity (405 kyr).  This spectral data was then fine-tuned and scaled using a variety 

of filters and models (Kodama et al., 2010).  The filters and tuning of the spectral data generated 

strong peaks for long and short eccentricity (400 kyr, and 95 to 128 kyr) as well as precession 

(23 kyr, 22 kyr, 19 kyr) (Kodama et al., 2010).  The spectral output was then used to refine the 

absolute timescale in between polarity boundaries (Kodama et al., 2010).  The periodic variations 

in magnetic properties, as determined by Kodama et al. (2010), provided a higher-resolution 

timescale than magnetostratigraphy alone, providing more detailed insight into past 

environmental, climatic, or accumulation rate variations. 

Cyclostratigraphy is a broad field that aims to collect high-resolution data over 

sometimes quite long, stratigraphic intervals (Kodama and Hinnov, 2015).  In the past, properties 

such as lithologic or isotope variations have been used to identify cyclic intervals related to 

astronomically forced climate changes (e.g., Olsen et al., 1996 and Hays et al., 1976).  However, 

data such as that obtained from the collection of magnetic susceptibility measurements are 

becoming more widely used in this field.  This is due to the relatively non-invasive techniques 

and high-resolution data that can be acquired from measuring magnetic susceptibility at the 

outcrop.  Iron bearing minerals are reflective of environmental and climatic history since they are 

sensitive to not only the conditions of their original formation, but also changes in depositional 

history and post-depositional alteration (Liu et al., 2012), all of which may be influenced by 

climate. 
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 Traditionally, magnetocyclostratigraphy has been tested on marine sediments as they are 

representative of more continuous deposition.  However, Kodama (2016) successfully identified 

an eccentricity and obliquity signal in the 330 Ma fluvial red beds of the Mauch Chunk 

formation in Pennsylvania using outcrop based magnetic susceptibility measurements.  The 

Mauch Chunk developed under semi-arid conditions in a sub-aerial to fluvial environment 

through deltaic progradation (Vrazo et al., 2007).  The Mauch Chunk formation shares 

similarities with the depositional history of the 1.1 Ga Copper Harbor Conglomerate which 

developed under arid conditions and was deposited through alluvial fan deposition that fed into 

ephemeral bodies of water (Wolff and Huber, 1973; Elmore, 1984).  The goal of this thesis is to 

determine if it is possible to isolate a cyclic signal linked to climate or deposition in the 

Precambrian rock record, using magnetic susceptibility.  This thesis focuses on a small section of 

the Porcupine Wilderness State Park, Michigan, that hosts a sandstone facies of the Copper 

Harbor Conglomerate (CHC) (Fig. 1).  The measurements and samples for this research were 

selected and obtained from a small section of fine- to medium-grained sandstones that featured a 

variety of sedimentary bed-forms.  Physical properties studied included the magnetic mineral 

abundance, arrangement, composition, and grain size.  The characterization of these magnetic 

properties allowed for the assessment of the degree to which magnetic mineralogy may be linked 

to depositional variations at this locality. 
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1.2 Magnetic Terminology 

 

To understand the research presented in this thesis, we define several magnetic terms. 

Curie Temperature (TC) is a critical temperature at which thermal energy overcomes electronic 

exchange energy, resulting in randomization of electron spins (Moskowitz, 1991).  TC is related 

Figure 1: Geologic map of Porcupine State Park 

(a) The inset map highlights the study area, particularly the Upper Peninsula of Michigan.  The research for this 
thesis is focused within the Porcupine Wilderness State Park, highlighted in light pink, and enclosed by the black 
box outline.  (b) Field Locality 1 is at Union Bay Campground, highlighted by the blue star.  Field Locality 2 is 
highlighted by the red star.  The samples were selected from the Copper Harbor Conglomerate geologic unit.  
Modified from Michigan Department of Natural Resources. 
 

(a) 

(b) 

Lake	Superior	
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to mineral composition and therefore can be used in magnetic mineral identification. Coercivity 

relates to the ability of a magnetic material to resist changes in magnetization.  A material with 

high coercivity that is difficult to re-magnetize is often expressed as ‘hard’ while a material with 

low coercivity that is easy to re-magnetize is often denoted as ‘soft’.  Coercivity is related to both 

magnetic mineral composition, as well as magnetic domain state.  

A magnetic domain is defined by a uniform direction of magnetization that is influenced 

by the individual magnetic moments of atoms within the material.  The domain state is affected 

by grain size.  Superparamagnetic (SP) particles are uniformly magnetized, but are too small to 

support remanent (permanent) magnetization.  Single domain (SD) particles are the smallest 

grain size that supports remanent magnetization, followed by pseudo-single domain (PSD), and 

finally the larger domain, multi-domain (MD) particles.  In SP nanoparticles, thermal energy 

dominates, and they carry no remanence and therefore have no coercivity.  SD grains are small 

enough that they are not capable of maintaining a domain wall, allowing these grains to be 

uniformly magnetized with high remanence and coercivity.  MD grains are large enough that 

they can host a domain wall meaning that they are not uniformly magnetized.  They have low 

remanence and coercivity and areas between domain walls are magnetically stable.  PSD grains 

lack domain walls but have non-uniform magnetization, meaning they have characteristics 

similar to both SD and MD grains of high remanence but low coercivity (Moskowitz, 1991). 
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CHAPTER 2. BACKGROUND 

 

2.1 General Overview of the Mid-Continent Rift and the Copper Harbor 

Conglomerate 

 

During the 

Proterozoic, the continent 

Amazonia was separated from 

Laurentia by a strike-slip 

motion that began 

approximately 1.20 bya and 

lasted until 1.12 bya (Fig. 2; 

(Stein et al., 2014; Tohver et 

al., 2006).  Seafloor spreading 

was established between the 

two continents as the shearing 

progressed, eventually 

separating them and ending 

the strain exerted on Laurentia.  However, before the two cratons separated due to seafloor 

spreading, an internal rift developed within Laurentia (Stein et al., 2016).  This relict feature is 

better known as the failed, Mid-Continent Rift (MCR) of modern day North America. The MCR 

feature is an approximately 3,000 km long, fault-bounded basin that extends from the Lake 

Superior region to the state of Kansas.  The initial structure of the rift was dominated by faulting 

Figure 2: Separation of Amazonia from Laurentia 

Depicts relationship between Amazonia and Laurentia, the spreading 
center between the two continents and the positioning of the MCR 
within the Laurentia Craton (~1.20-1.12 Ga). Modified from Stein et al. 
2015. 
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and subsidence related to extension.  As the rift continued to develop, active rifting associated 

with a mantle plume contributed to the volcanic rocks that accompanied the MCR system (Fig. 

3) (Stein et al., 2016).  Sediments eventually infilled the basin primarily after the cessation of the 

extensional and volcanic interval of the MCR (Stein et al., 2016).  The CHC sandstone of this 

study was part of the basin-margin alluvial fan system that deposited this sediment into the MCR 

basin approximately 1 bya.  The CHC sandstone eventually fines into the lacustrine deposits of 

the Nonesuch Shale, which rests deeper into the MCR basin, which is identified as the 

Keweenawan Trough (Elmore, 1981). 

 

2.2 General Background of the Copper Harbor Conglomerate Formation 

 

The CHC rests upon the extinct MCR basin in the synclinal Keweenawan Trough of Lake 

Superior.  This trough fully developed between 1.12-1.10 bya, following the cessation of rifting 

(Gordon and Hempton, 1986; Green, 1982).  The base of the CHC overlies rocks associated with 

the Portage Lake Volcanics (PLV), which were active near the end of the extensional phase of 

the MCR and were the longest and most volumetrically significant volcanics related to the MCR 

(Ojakangas et al., 2001).  The Lake Shore Trap (LST) volcanics followed the end of rift-related 

extension and interbed with the base of the CHC (Ojakangas et al., 2001).  The LST represent the 

last volcanic activity associated with the failed MCR (Ojakangas et al., 2001).  
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The CHC is the lowest unit in the Oronto Group, a sedimentary unit generated by 

erosional deposits related to the Grenville orogeny and the formation of Rodinia (1.30-0.95 Ga) 

(Ojakangas et al., 2001; Stein et al., 2015).  The sediments of the CHC originate primarily from 

the surrounding, predominantly volcanic rocks of the region (Elmore and van der Voo, 1982).  

Legend
MCR
State Outline

High: 30661.8 nT

Low: -9982.0 nT

Figure 3: Aeromagnetic survey of the MCR 

A gravity survey that demonstrates the extent of the MCR (outlined in black), the teal box designates 
the approximate location of the field study.  Modified from United States Geological Survey from 
various sources. 
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The CHC sandstone facies is overlain by and interbedded with the lacustrine Nonesuch Shale, 

while the Freda Sandstone caps both units (Ojakangas et al., 2001).  Figure 1 represents the 

juxtaposition of these units in the present geographic region of the field area for this study. It has 

been suggested that the transportation mechanism of CHC material was through alluvial and 

braided fan depositional systems that deposited debris in the rift basin during wet seasons (Fig. 

4) (Wolff and Huber, 1973).  Over the course of arid intervals, the dry sediment was interpreted 

to have been reworked by wind activity (Taylor and Middleton, 1990; Ojakangas et al., 2001).  

The CHC succession tends to fine upward and thicken basin-ward (Elmore, 1984).  The base of 

the formation begins as a conglomerate with Keweenawan sourced volcanic clasts varying in 

Figure 4: Depositional Setting within the Keweenawan Trough 

Image depicts a typical depositional model for the transport and accumulation of sediments associated 
with basin fill of the MCR system. 
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size from sands to boulders (Ojakangas et al., 2001). Laterally, the conglomerate transitions to a 

red-brown, angular-sub-angular sandstone that alternates between medium- and fine-grained 

(Elmore, 1984; Bornhorst and Barron, 2013; Ojakangas et al., 2001).  

 

2.3 Field Location Features and Descriptions 

 

The conglomerate and sandstone of the CHC is exposed throughout the Keweenawan 

Peninsula and along the northern Michigan shoreline of Lake Superior (Elmore, 1984).  

Stratigraphic measurements discussed later in this study begin from the boat launch found on the 

shoreline of Lake Superior within the Union Bay campground.  The general grain size 

identification of the outcrop exposure at Union Bay has been designated as well-sorted 

sandstones ranging from fine-to-medium grain-sizes that are angular to sub-angular (Wolff and 

Huber, 1973).  Beginning from the boat launch location and moving up the section, 

stratigraphically, the first approximately 70 m are predominantly fine-grained, sublitharenite 

sandstones.  This lower stratigraphic section, of fine-grained sandstones, primarily features dunes 

and cross-beds. It is important to note that fine-grained, cross-bedded sandstones featuring dunes 

are difficult to produce by unidirectional water flow (Moorhouse and White, 2016).  

Accretionary deposits such as bars, can produce cross-bed-like features, and fine sediment can 

produce cross-laminations due to ripple migration (Cheel, 2002).  However, very fine sand 

cannot easily produce cross-bedding in dunes (Cheel, 2002), such as what we see at Union Bay. 

Throughout the entire outcrop exposure, there is a variety of depositional features including 

significant cross-stratification and trough-cross bedding associated with dunes, as well as parting 

lineation, climbing ripples, desiccation cracks, rip-up clasts, and ‘knobbly structures’.  Taylor 
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and Middleton (1990) referred to these knobbly structures as dewatering features but Noffke 

(2009) and Wilmeth et al. (2014) designated them to be microbial influenced sedimentary 

structures (MISS) that occurred on top of bedding planes.  Around 70 m up-section, the grain 

size transitions to predominantly medium-grains with occasional coarse grain sandstone 

intervals.  The grain size shift at approximately 70 m is also marked by thinner beds.  Overall, 

the outcrops dip to the northeast (~21º) into and towards the central axis of the Keweenawan 

Trough which trends in a NE-SW direction through the middle of Lake Superior. 

 

2.4 Magnetic Mineralogy and Paleomagnetic Overview of the Copper Harbor 

Conglomerate and The Local Volcanics 

 

The CHC sediments primarily originated from erosion of the local volcanics, including 

the PLV, which were emplaced during and post extension of the MCR, and the LST volcanics, 

which occurred almost entirely during post extensional time (Ojakangas et al., 2001; Stein et al., 

2015).  To explain the magnetic mineralogy of the CHC, I therefore start with the volcanics from 

which the sediments were derived.   

These regional volcanics have concentrations of magnetite and hematite, both of which 

carry magnetic remanence (Hnat et al., 2006; Kulakov et al., 2013).  DuBois (1962) and Hnat et 

al. (2006) theorized that magnetite was a primary mineral of the PLV, and that hematite was a 

secondary mineral, formed via oxidation during cooling.  This interpretation is supported by 

common directions for the magnetite (declination = 291.2°, inclination = 31.3°, a95 = 5.6º) and 

hematite (declination = 288.8º, inclination = 38.6º, a95 = 6.0º) magnetizations.  This suggests that 

the magnetizations were acquired within a short time of cooling for both magnetic contributions 
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(Hnat et al., 2006).  The LST also carries both soft (magnetite) and hard (likely hematite) 

components, with identical directions (declination = 277.8º, inclination = 41.0º, a95 = 2.3º) 

(Kulakov et al., 2013).  Due to the directional similarities between the two components, it was 

inferred that the hematite formed via alteration of magnetite during the initial cooling of the LST 

(Kulakov et al., 2013).  

Previous magnetic studies of the CHC found that the sandstone unit also has two 

magnetic remanence carriers: a low coercivity mineral inferred to be detrital magnetite that 

maintains a depositional remanence, and a high coercivity mineral interpreted to be mostly 

authigenic hematite that carries a secondary, post-depositional remanence (Elmore and van der 

Voo, 1982).  There is a significantly larger fraction of hematite in the CHC relative to magnetite.  

Magnetite accounts for ~20-30% of the natural remanent magnetization (NRM), and its 

magnetization direction (declination = 294º, inclination = -7.6º) was isolated via the chemical 

demagnetization of the hematite component (declination = 286.5º, inclination = 0.0º) (Elmore 

and van der Voo, 1982).  Inclination is correlated with bedding dip, suggesting that the magnetite 

remanence is depositional (Elmore and van der Voo, 1982).  By contrast, the hematite inclination 

is not correlated with bedding dip, and the remanence direction of the hematite in the CHC is 

different from the magnetite direction and comparable with that of the overlying Freda 

Sandstone and Nonesuch Shale (Elmore and van der Voo, 1982).  These observations support the 

interpretation that the hematite is indeed authigenic and therefore representative of a younger 

magnetic direction than that of magnetite (Elmore and van der Voo, 1982). 

The exact nature and source of the hematite remanence is somewhat unclear, as previous 

studies found hematite present in multiple forms.  The hematite present in the CHC at Union Bay 

is primarily found as ultrafine-pigmentary stain, martitized grains, or specularite oxide grains 
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(Elmore and van der Voo, 1982).  The ultrafine-pigmentary hematite stain within the CHC either 

occurs as irregular clay coatings or uniform clay rims that exist between grain contacts (Elmore 

and van der Voo, 1982).  The uniform clay coatings would have developed prior to deposition, 

the clay platelets found in these uniform rims was likely a product from the weathering and 

dehydration of iron-bearing silicates (Elmore and van der Voo, 1982).  Meanwhile the irregular 

clay coatings that present as a box-work texture are inferred to have formed in place, post-

depositionally, within the interstitial spaces between grains (Elmore and van der Voo, 1982).  

The ultrafine-pigmentary hematite of the clay rims, whether pre- or post-deposition, was inferred 

to be mostly superparamagnetic (SP) in size and should not be able to carry a magnetic 

remanence.  However, a wide range of blocking temperatures was observed in samples from the 

CHC, which indicates that fine-grained hematite likely carries a significant amount of the 

magnetic remanence (Elmore and van der Voo, 1982).  The wide range of blocking temperatures 

is likely attributed to variable magnetic grain sizes.  Hematite of possible authigenic or detrital 

origin exists within the CHC either as post-depositional martite grains or pre-depositional martite 

found in volcanic fragments (Elmore and van der Voo, 1982).  Martite is a pseudo-morph of 

magnetite that maintains the habit of magnetite, despite altering into hematite, and some of the 

CHC martite grains maintain relict magnetite (Elmore and van der Voo, 1982; Vincenz, 1968).  

Martite found in local volcanics from which the CHC was sourced support its presence within 

the CHC as detrital.  However, Elmore and van der Voo (1982) suggest that at least some of the 

martite transformed post-depositionally.  Although the ~1µm specularite oxide grains may be 

depositional, Elmore and van der Voo (1982) similarly suggested that these are authigenic and 

therefore carry a secondary remanence.   
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Because our study is not concerned with remanence, we shift our focus to what 

contributes to magnetic susceptibility.  Susceptibility measures the total response to an induced 

magnetic field, and reflects all magnetic minerals.  Magnetic susceptibility is typically influenced 

by mineralogy, grain size, or concentration.  Elmore and van der Voo (1982) observed detrital 

magnetite, martite, and specularite as well as authigenic pigmentary hematite clay rims and 

coarse hematite crystal grains.  Whether the hematite is authigenic or detrital, fine or coarse 

grained, due to its significant abundance in the CHC it is likely that its presence will be a 

dominant factor for susceptibility measurements.  Therefore, one of our primary goals is to 

determine if susceptibility measurements are representative of a depositional signal for this unit.  
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CHAPTER 3. METHODS 

 

3.1 Block Sampling 

 

Three field excursions were conducted, the first in August of 2016, the second in May of 

2017, and the third in August of 2017.  During the first field season (August 2016), fifteen pilot 

samples were acquired with a rock hammer and chisel from field Locality 1 and 2 (Fig. 1).  The 

second field season (May and August 2017), twenty-nine additional samples were acquired only 

from field Locality 1.  The samples for both field seasons were all hand size, orientated block 

samples, weighing approximately 1-3 lbs individually, and not exceeding 30 x 20 cm.  Samples 

were oriented with a Brunton magnetic compass, and strike and dip were marked on the sample. 

In accordance with our permit granted by the Michigan Department of Natural Resources for use 

of State Land, samples were collected along the shoreline outcrops of the CHC next to Union 

Bay Campground, within The Porcupine Wilderness State Park, Michigan.  The pilot samples of 

the first field season were selected from two different Localities.  Locality 1 (Fig. 1) samples 

were selected based upon unique bedding features that included depositional varieties of fine 

laminations, presence of MISS, ripples, rip-up clasts, mud cracks, trough cross-bedding, and 

proximity to conglomerate beds or parting lineation bedforms.  Locality 2 was ~21 km west of 

the campground, and was selected due to the relatively larger grain size and the amount of heavy 

physical weathering that had occurred at the location.  Following initial testing of the fifteen pilot 

samples, Locality 2 was not resampled during the subsequent season.  The second field season 

focused sampling at Locality 1 to within the first 60 stratigraphic meters from the boat launch.  

We obtained supplementary, oriented block samples that were sparsely spaced throughout the 
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section.  These block samples were taken on average every 2.67 stratigraphic meters, at 

minimum intervals of 0.09 m and maximum intervals of 26.8 m. 

 

3.2 Naming Convention 

 

To interpret the legends and plots described in this thesis, please reference our naming 

convention.  Locations are defined by CH16 and CH17, CH stands for Copper Harbor while 16 

and 17 stand for 2016 and 2017 field seasons, respectively.  The sampling locality is denoted as 

either 01 or 02 directly following the location sequence.  Each block sample taken has a unique 

sample number, denoted by the last two numbers in the sequence, ranging from 01 – 29.  Each 

sample was subdivided into specimens, indicated by a letter at the very end of the numbered 

sequence.  For example, CH160103a represents specimen ‘a’ taken from sample 3, collected 

from Locality 1 during the 2016 field season. The only exceptions to this naming convention are 

CH160102b and CH170110s.  These are secondary samples taken at the same time as Sample 2 

during the 2016 season and Sample 10 during the 2017 season, respectively. 

 

3.3 Outcrop Susceptibility Measurements 

 

To conduct outcrop susceptibility measurements, the KT-10 v2 S/C Magnetic 

Susceptibility Meter was used.  The meter has an operating frequency of 10kHz, a susceptibility 

sensitivity of 1 x 10-6 SI units, and a susceptibility range of 0.001 x 10-3 to 1999.99 x 10-3 SI 

units.  Magnetic susceptibility (c) is a physical property that conveys the extent to which a 

material becomes magnetized in the presence of a field. c = M/H, M=intensity of magnetization 
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and H=magnetic field.  The KT-10 meter applies an alternating field and derives susceptibility 

from the response frequency difference between the outcrop and the free-air.  The susceptibility 

meter averages over a distance of 65 mm which is the diameter of the meter’s coil. 

 

3.3.1 Stratigraphic Susceptibility Measurement Collection 

 

Along the Lake Superior shoreline in Union Bay State Park of the Porcupine Wilderness, 

Michigan, stratigraphic susceptibility measurements were collected.  These measurements were 

obtained to achieve high-resolution information due to the necessarily sparse physical sample 

collection permitted at this outcrop location.  Accurate spectral analysis of the stratigraphic 

variations in susceptibility requires frequent measurements that are evenly spaced and accurately 

located. Our measurement strategy was to sample approximately every 0.5 m.  However, because 

outcrop along the lake was not continuous and dipped into the lake, there were both occasional 

gaps in the sampling and likely some error in measuring the section.  Measurements were made 

by pressing the susceptibility meter flush against the outcrop to measure the magnetic 

susceptibility at each location.  Stratigraphic measurements were taken a minimum of every 0.01 

m and a maximum distance of 1.5 m apart in stratigraphic height, with an average spaced interval 

of 0.47 m.  These susceptibility readings were taken up-section, stratigraphically, over a total of 

56.4 m.  A minimum of three measurements were taken at each measurement location to 

estimate uncertainty.  Good contact between the susceptibility-meter and outcrop is required for 

accurate readings, and clear outlier measurements were discarded. 
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3.3.2 Stratigraphic Susceptibility Data Analysis 

 

 A spectral analysis of the susceptibility data series was conducted following the protocol 

outlined by Kodama and Hinnov (2015).  First, the data series was resampled at the average 

sampling rate of 0.47 m using a simple linear interpolation (Kodama et al., 2010).  A linear trend 

was removed from the data series using MatlabTM polynomial curve fitting and evaluation.  The 

multitaper spectral analysis of the data utilized a set of 5, 3π Slepian tapers following Matlab 

function pmtm.  Tapers are regulated by mathematical functions that define the shape of a data 

window (Kodama and Hinnov, 2015).  Data windows are used to isolate time series data by 

dropping all values outside of the defined window to zero and the smoothness or sharpness of the 

window edge is defined by the taper function used (Kodama and Hinnov, 2015).  Multiple 

Slepian tapers were used, each taper functions independently of the others, but when all tapers 

are summed together they approximate the simplest data window, the Dirichlet window 

(Kodama and Hinnov, 2015).  Due to the greater uncertainty in the positioning of our data, we 

used the 3π Slepian taper rather than the 2π Slepian taper that was recommended by Kodama et 

al. (2010) to assist with greater smoothing of our data.  The greater smoothing diminishes the 

spectral resolution but increases confidence in the spectral peaks.  Significance of the spectral 

peaks was estimated by performing a Monte Carlo simulation (N=1000) of a red noise spectrum, 

using Matlab code developed by D. Husson (available from 

https://www.mathworks.com/matlabcentral/fileexchange/45539-rednoise-confidencelevels) and 

resulted in 80%, 85%, 90%, and 99% confidence limits.  Elevation of data spectral peaks above 

the red noise background level suggests these frequency peaks are not noise.  The red noise 

spectrum is thought to best represent climate and geological time series (Kodama and Hinnov, 
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2015).  Red noise gives greater power to lower frequency rather than high frequency noise, and 

unlike white noise spectrums that are completely independent of frequency behavior, red noise 

retains a “memory” (Kodama and Hinnov, 2015).  This memory means that prior behavior 

influences future behavior (Kodama and Hinnov, 2015).  

 

3.3.3 Small Scale Outcrop Susceptibility Measurement Collection 

 

 To examine variability at length scales < 0.5 m, two separate grid sections were 

established to measure susceptibility variations within bed-forms.  Grid 1 (46º49’22.45” N, 

89º38’19.12” W) was mapped out on a flat outcrop surface with a grid system measuring 90 x 40 

cm.  The grid was sectioned off into 5 x 5 cm squares, which created eight columns vertically 

down the grid labeled A-H, and eighteen rows horizontally across the grid labeled 1-18.  

Susceptibility was measured within each 5 x 5 cm square.  Grid 2 (46º49’22.45” N, 89º38’19.12” 

W) was also mapped adjacent to Grid 1 on the same outcrop.  This grid was mapped out in an 

irregular rectangular shape to avoid rough sections of the outcrop that would not permit for direct 

contact between the rock and the susceptibility-meter.  The horizontal length of the grid was 310 

cm, and the vertical extent varied from 170 cm on the left to 230 cm on the right.  Vertically 

from top-to-bottom, susceptibility measurements were taken every 5 cm.  Horizontally from left-

to-right, susceptibility measurements were taken every 10 cm.  In accordance with earlier 

susceptibility recordings, a minimum of three measurements were taken at each point within both 

grids to establish an average reading of susceptibility.   
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3.4 Hand Sample Laboratory Methods 

 

3.4.1 Sample Preparation 

 

From the pilot samples obtained during the initial field season, four individually oriented 

~1x1x1 inch cube specimens were cut from all samples using a table saw with a 6” blade.  Four 

specimens were cut from each sample block, resulting in 60 total specimens.  Prior to cutting, the 

strike and dip of the block sample was transferred across the rock surface so that outcrop position 

could be maintained during laboratory analysis.  NRM, room-temperature bulk susceptibility 

(cB), and anisotropy of magnetic susceptibility (AMS) were measured on all four specimens 

from each sample.  One specimen set was subjected to detailed isothermal remanent 

magnetization (IRM) step-acquisition up to 1 T, followed by a single back-field IRM at 0.3 T.  

Curie temperatures (TC) were measured on additional crushed material from the pilot samples.  

The coarsely crushed specimen splits were placed into a quartz tube when measured by the CS4 

furnace attachment of the MFK1 Kappabridge. 

The 29 samples obtained during the second field season were prepared in the same 

fashion as those from the initial field season.  However rather than creating four sets of 

specimens, only one set was required for laboratory measurements.  The excess from the cut 

samples was retained for alternate or future sample testing.  The same tests were also performed, 

except for the detailed IRM acquisition and TC measurements.  
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3.4.2 Laboratory Instrumentation 

 

All remanence measurements for both the pilot and subsequent specimens were 

conducted on a 2G Enterprises 755SRMS Superconducting Rock Magnetometer housed inside 

the shielded room at the University of Wisconsin-Milwaukee Paleomagnetic Laboratory.  cB and 

AMS were measured on an Agico MFK1 Kappabridge susceptibility bridge.  Susceptibility was 

measured as a function of temperature, c(T), on coarsely crushed splits from each pilot sample.  

This was carried out using the CS4 furnace attachment for the MFK1 Kappabridge under air 

atmosphere.  Curie temperatures were estimated by taking the peak in the first derivative of the 

c(T) data after applying a furnace correction and smoothing the data with a running-mean filter. 

 

3.4.3 Chemical Demagnetization 

 

Pilot specimen sets 3 and 4 were retained for additional resources or future testing not 

included in this research.  Pilot specimen set 1 was subjected to chemical demagnetization with 

the intention of isolating detrital magnetite.  This process involved the submersion of each 

specimen into 3N HCl solution, with the purpose of preferentially dissolving the fine-grained 

pigmentary hematite.  The leaching process was monitored by measuring magnetization at 3-day 

intervals for a total of 480 hours.  The leaching process was abandoned after 480 hours due to the 

small amount of remanence that was removed during the process.  
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3.4.4 Isothermal Remanent Magnetization (IRM) Acquisition 

 

Pilot specimen set 2 was alternating field (AF) demagnetized using an ASC D-2000 

Alternating Field Demagnetizer up to peak fields of 200 mT.  However, the high-coercivity 

hematite proved resistant to demagnetization.  Samples from Locality 1 lost 26.12% ± 8.19% 

NRM on average, and Locality 2 lost 59.43% ± 1.23% NRM on average.  Next, the specimens 

acquired a 20-step isothermal remanent magnetization (IRM) up to a 1 T field using an ASC 

Model IM10-30 impulse magnetizer (IRM steps were applied at 5, 10, 15, 20, 25, 30, 40, 50, 60, 

80, 100, 125, 150, 200, 250, 300, 400, 600, 800, and 1000 mT).  Following the final step at a 1T 

field, a backfield 300 mT IRM was acquired to enable calculation of the S-ratio and Hard-IRM.  

Samples from the second field season were only given the 1T forward IRM and the 300 mT 

backfield IRM.  We use the S-ratio definition of –IRM-300mT/IRM1T where IRM-300mT is the 

backfield 300 mT IRM following application of the forward 1 T field (Liu et al., 2012).  When 

an S-ratio is near 1 the data would be representative of a greater proportion of soft minerals 

within the sample, such as magnetite, while a value near -1 would be indicative of harder 

minerals such as hematite.  We calculate the Hard-IRM = 0.5 x (IRM1T + IRM-300mT) and the 

Soft-IRM = IRM1T – Hard-IRM.  Respectively, these represent the portion of the IRM carried by 

high-coercivity and low-coercivity magnetic minerals.  

IRM acquisition data from the pilot specimens was decomposed in terms of their 

coercivity spectra to tease out variations in different populations of magnetic grains.  We apply 

this technique to the first derivative of the IRM vs. applied field data, following methodology 

developed by Robertson and France (1994), Stockhausen (1998), Kruiver et al. (2001), Heslop et 

al. (2002), Egli (2003), Heslop and Dillion (2007), and Heslop (2015), modified by Maxbauer et 
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al. (2016).  The MAX UnMix web application fits a set of skew-normal functions to the observed 

coercivity distribution as determined by the first derivative of the log data curves (Maxbauer et 

al., 2016).  The program requires a bit of subjectivity as the user determines the number of 

components and identifies the preliminary characteristics of the distributions (Maxbauer et al., 

2016).  After the user completes the initial fit for the data, the program will refine the model to 

minimize any misfit to the data (Maxbauer et al., 2016).  A complete explanation of this program 

is found at http://www.irm.umn.edu/maxunmix or in Maxbauer et al. (2016). 

Each of the pilot specimen’s IRM data sets was imported into the MAX UnMix website 

program.  The data were then smoothed with a smoothing spline that assists with curve fitting at 

ranges between 0 (no smoothing), to 1 (maximum smoothing) (Maxbauer et al., 2016).  The 

smoothing factor that was applied to the IRM acquisition curves of the pilot samples was 0.3 and 

was utilized to remove excessive noise from the set which becomes amplified from taking the 

first derivative.  

 

3.4.5 Anisotropy of Magnetic Susceptibility (AMS) 

 

AMS is determined by the directional relationship between a magnetic field and induced 

magnetization.  AMS is frequently used to estimate the alignment of magnetic minerals within a 

specimen or site by measuring how the magnitude of susceptibility changes with orientation to 
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an applied field.  This characteristic is made 

possible by minerals that have a shape anisotropy 

which affects the easy axis of magnetization.   

Anisotropy is described by a second rank 

tensor.  The eigenvalues and eigenvectors of this 

tensor can be represented by an ellipsoid with 

three principal axes that correspond to the 

maximum (easy), intermediate, and minimum 

(hard) directions of magnetization. The lengths of 

the axes are determined by eigenvalues, t1 (maximum), t2 (intermediate), and t3 (minimum).  

The directions of the principal axes are given by the eigenvectors V1 (maximum), V2 

(intermediate), and V3 (minimum) (Figure 5).  The shape of an ellipsoid can be characterized as 

spherical (isotropic, t1=t2=t3), oblate (t1=t2>t3), prolate (t1>t2=t3), or triaxial (t1>t2>t3) 

(Tauxe, 2016; Fig. 6).   

 

A typical sedimentary fabric for sediments deposited in quiet, standing water is an oblate 

shape with the V3 oriented perpendicular to the bedding (Tauxe, 2016).  When slow-moving 

Figure 6: Magnetic shapes as determined by their eigenvalues 

Modified from Tauxe, 2016. 

Figure 5: Orientation of eigenvectors 

Modified from Tauxe, 2016. 
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currents are responsible for deposition, once again the AMS shape will be oblate, but the grains 

will be slightly imbricated with V3 shifted slightly away from a vertical orientation (Tauxe, 

2016).  Typically, very fast moving or turbulent flow will create a prolate or triaxial AMS fabric 

(Tauxe, 2016).  High energy deposition may result in grains rolling with their long axes 

perpendicular to flow direction.  In this case, V3 axes will appear smeared across a stereonet plot 

and the orientation of V1 will be perpendicular to the direction of paleo-flow (Tauxe, 2016).  

However, in the case of less turbulent, more moderate water flow, magnetic grains will orient 

with their long axes parallel to flow direction (Tauxe, 2016).  Both sets of specimens from the 

pilot sampling and secondary field season were subjected to measurement of AMS. 
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CHAPTER 4. RESULTS 

 

4.1 Overview of Laboratory Magnetic Measurements 

 

All measured samples from both field seasons had two magnetic components, one high 

and one low coercivity.  Both NRM and cB were relatively constant; the mean NRM was 1.35 ± 

0.58 x 10-2 Am2/kg and the mean cB was 1.21 ± 0.21 x 10-7 m3/kg.  Heating curve Curie 

temperatures (TC) ranged from 550-572ºC, suggestive of low-Ti titanomagnetite, while 

approximately half had an additional TC in the range of 600-680ºC, suggestive of titanohematite.  

Refer to Table 1 for a complete compilation of characteristics pertaining to TC, NRM, cB, and 

IRM un-mixing of the pilot samples from the initial field season (2016).  Refer to Table 2 for a 

compilation of characteristics pertaining to NRM, cB, IRM un-mixing, and relative stratigraphic 

height of the subsequent samples from the second field season (2017).  Raw IRM, c(T), and 

AMS data have been archived in the Magnetics Information Consortium (MagIC) database 

(earthref.org/MagIC). 
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Table 2: CH17 bulk magnetic properties 

Specimen ID 
S-ratio 

 

IRM1T 

(Am2/kg) 

Hard IRM 

(Am2/kg) 

Soft IRM 

(Am2/kg) 

NRM 

(Am2/kg) 
cB (m3/kg) 

Stratigraphic 

Height (m) 

CH170101A -3.50 x 10-1 6.30 x 10-3 4.25 x 10-3 2.05 x 10-3 8.80 x 10-3 1.13 x 10-7 14.4 

CH170102A -3.51 x 10-1 6.51 x 10-3 4.40 x 10-3 2.11 x 10-3 9.08 x 10-3 1.12 x 10-7 16.0 

CH170103A -2.41 x 10-1 5.48 x 10-3 3.40 x 10-3 2.08 x 10-3 1.01 x 10-2 1.11 x 10-7 16.0 

CH170104A -2.45 x 10-1 4.85 x 10-3 3.02 x 10-3 1.83 x 10-3 8.66 x 10-3 9.45 x 10-8 19.0 

CH170105A -3.24 x 10-1 6.62 x 10-3 4.38 x 10-3 2.24 x 10-3 9.97 x 10-3 1.22 x 10-7 21.6 

CH170106A -3.87 x 10-1 4.90 x 10-3 3.40 x 10-3 1.50 x 10-3 9.91 x 10-3 1.14 x 10-7 26.0 

CH170107A -4.95 x 10-1 6.67 x 10-3 4.99 x 10-3 1.68 x 10-3 1.63 x 10-2 1.39 x 10-7 26.1 

CH170108A -6.09 x 10-1 4.75 x 10-3 3.83 x 10-3 9.29 x 10-4 1.43 x 10-2 1.29 x 10-7 26.7 

CH170109A -4.12 x 10-1 6.71 x 10-3 4.74 x 10-3 1.97 x 10-3 1.44 x 10-2 1.37 x 10-7 26.8 

CH170110A -3.97 x 10-1 4.86 x 10-3 3.39 x 10-3 1.47 x 10-3 9.92 x 10-3 1.18 x 10-7 29.1 

CH170110SA -4.04 x 10-1 5.06 x 10-3 3.55 x 10-3 1.51 x 10-3 7.84 x 10-3 1.23 x 10-7 29.1 

CH170111A -3.53 x 10-1 8.04 x 10-3 5.44 x 10-3 2.60 x 10-3 1.35 x 10-2 1.37 x 10-7 30.2 

CH170112A -5.42 x 10-1 5.40 x 10-3 4.16 x 10-3 1.24 x 10-3 1.30 x 10-2 1.41 x 10-7 30.7 

CH170113A -3.92 x 10-1 4.74 x 10-3 3.30 x 10-3 1.44 x 10-3 1.08 x 10-2 1.16 x 10-7 34.7 

CH170114A -2.43 x 10-1 5.32 x 10-3 3.31 x 10-3 2.01 x 10-3 9.26 x 10-3 1.09 x 10-7 35.5 

CH170115A -2.51 x 10-1 6.56 x 10-3 4.10 x 10-3 2.46 x 10-3 1.06 x 10-2 1.06 x 10-7 37.0 

CH170116A -1.50 x 10-1 6.12 x 10-3 3.52 x 10-3 2.60 x 10-3 1.15 x 10-2 1.14 x 10-7 39.0 

CH170117A -3.70 x 10-1 6.03 x 10-3 4.13 x 10-3 1.90 x 10-3 1.65 x 10-2 1.27 x 10-7 40.6 

CH170118A -2.68 x 10-1 5.59 x 10-3 3.55 x 10-3 2.05 x 10-3 7.49 x 10-3 9.71 x 10-8 43.3 

CH170119A -2.69 x 10-1 5.01 x 10-3 3.18 x 10-3 1.83 x 10-3 6.98 x 10-3 1.03 x 10-7 45.2 

CH170120A -4.39 x 10-1 6.27 x 10-3 4.51 x 10-3 1.76 x 10-3 1.44 x 10-2 1.52 x 10-7 47.5 

CH170121A -3.33 x 10-1 6.29 x 10-3 4.19 x 10-3 2.10 x 10-3 7.34 x 10-3 1.20 x 10-7 48.9 

CH170123A -4.56 x 10-1 4.52 x 10-3 3.29 x 10-3 1.23 x 10-3 1.05 x 10-2 1.18 x 10-7 50.7 

CH170124A -4.15 x 10-1 5.27 x 10-3 3.73 x 10-3 1.54 x 10-3 1.32 x 10-2 1.21 x 10-7 52.7 

CH170125A -3.28 x 10-1 6.26 x 10-3 4.15 x 10-3 2.10 x 10-3 8.50 x 10-3 1.16 x 10-7 53.7 

CH170126A -3.09 x 10-1 5.51 x 10-3 3.61 x 10-3 1.90 x 10-3 6.15 x 10-3 1.14 x 10-7 54.2 

CH170127A -4.82 x 10-1 5.59 x 10-3 4.14 x 10-3 1.45 x 10-3 1.30 x 10-2 1.30 x 10-7 55.4 

CH170128A -3.09 x 10-1 8.12 x 10-3 5.31 x 10-3 2.81 x 10-3 1.65 x 10-2 1.20 x 10-7 55.9 

 
Table 2: The S-ratio, SIRM, Hard-IRM, and Soft-IRM concluded that high coercivity, hard minerals such as hematite dominated the 
magnetic remanence of the CHC.  Magnetic characteristics of the CHC are listed as well including the natural remanent magnetization 
prior to any testing (NRM), the bulk susceptibility (cB), and their stratigraphic height relative to the boat launch at Union Bay 
Campground. 
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4.2 Chemical Demagnetization 

 

 Overall very little remanence was lost through the chemical demagnetization process. On 

average, a total of 1.70% ± 2.76% of the NRM was removed after the full 480 hours.  A range of 

5.75% of original NRM was removed and 4.41% remanence was gained during the leaching 

process.  Ultimately, chemical demagnetization had very little effect on remanence.  Elmore and 

van der Voo (1982) successfully removed 50-80% of the total NRM through chemical 

demagnetization.  They saw the greatest reduction in magnetization within the first 400 hours 

(Elmore and van der Voo, 1982).  Despite Elmore and van der Voo’s (1982) success, our 

chemical demagnetization process was determined to not be a practical method to isolate the 

NRM associated with the magnetite component.  We speculate that Elmore and van der Voo 

(1982) saw a more favorable outcome for the removal of the NRM due to their higher strength 

solution (10N HCl) and due to their specimen preparation (2.2 cm height cores with additional 

slots cut into the specimens).   The slots cut into their specimens provided greater direct surface 

area to be in contact with the HCl solution, this may have been easier for the acid to permeate, 

resulting in a greater amount of dissolved hematite.  Since the NRM is not the focus of our study, 

this line of inquiry was dropped. 

 

4.3 Susceptibility as a Function of Temperature, c(T) 

 

The TC identified on heating varied widely between 395 to 637 ºC.  However, as noted 

above (Table 1), all samples had a TC on heating in the range near pure magnetite (580°C).  

Approximately half of the data displayed c(T) with strong irreversibility, reflected in a large 
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increase in susceptibility on cooling, a strong magnetite peak on cooling, and a color change 

from the original purple-red of the sample to black.  These qualities suggest that the hematite 

thermo-chemically altered to magnetite during measurement.  Such a transformation requires a 

reducing atmosphere, and although measurements were not made under flowing inert gas, they 

also were not made under flowing air.  This suggests that any oxygen in the sample chamber at 

the beginning of the experiment was consumed during the experiment.  Hopkinson peaks 

associated with magnetite were frequently observed on cooling curves but not on warming 

curves, primarily on samples that demonstrated significant irreversibility for c(T).  A Hopkinson 

peak is marked by a sharp, steep increase in susceptibility just below the Curie temperature.  The 

Hopkinson peak marks a sudden increase in susceptibility between the blocking temperature (TB) 

and TC that is often associated with finer magnetic grain sizes (Tauxe, 2016). This characteristic 

suggests that the newly-formed magnetite is of SD grain sizes.   

The temperature dependent susceptibility measured from the coarsely crushed specimen 

splits is relatively low, contributing to uncertainty and noise in the analysis.  For comparison, 

data measured with no specimen loaded (empty furnace and sample tube) is shown in Appendix 

1. The quartz sample, ceramic furnace assembly, and plastic cooling water jacket are all made of 

diamagnetic materials that have no magnetic remanence.  However, when exposed to a magnetic 

field diamagnetic materials have a small induced magnetization opposite to the applied field 

regardless of temperature (Butler, 2004).  Although the diamagnetic signal should be invariant 

with temperature, some component of the furnace assembly clearly has a temperature-dependent 

signal between ~500-700 °C (Appendix 1).  This signal is subtracted from the measured 

specimen data, but in some cases the specimen signal is barely above the background, resulting 

in some uncertainty in interpretation.  
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Figure 7: Data plots of the temperature dependent susceptibility 

The heating curve is shown in red and the cooling curve is shown in blue.  CH160101, CH160102, CH160102b, 
CH160105, CH160106, CH160108, CH160110, CH160201, and CH160202 exhibited magnetite.  Hopkinson 
peaks (outlined with golden boxes) occurred during cooling for CH160101, CH160102, CH160102b, CH160105, 
CH160106, CH160108, CH160110, CH160201, and CH160202, which is suggestive of single domain magnetite 
grains.  CH160101, CH160102, CH160102b, CH160105, CH160106, CH160108, CH160110, CH160201, and 
CH160202 displayed strong irreversibility between heating and cooling, demonstrated by the strong increase in 
susceptibility on cooling, likely reflective of the reduction of hematite to magnetite.  CH160103, CH160107, 
CH160111, demonstrated the least amount of alteration during testing.  CH160104 and CH160109 demonstrated 
moderate alteration from the heating and cooling procedure.  Smoothing factors were used to reduce the amount 
of noise produced from taking the first derivative of the heating curves.  A running mean 3-point smoothing 
factor was applied to CH160101, CH160102, CH160102b, CH160104, CH160105, CH160106, CH160108, 
CH160110, CH160112, CH160201, CH160202.  A smoothing factor of 6 was applied to CH160109, a smoothing 
factor of 9 was applied to CH160107 and CH160111, and a smoothing factor of 12 was applied to CH160103.  
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Figure 8: First derivative of susceptibility as a function 
of temperature 

The heating curve is shown in red and the cooling curve 
is shown in blue.  The negative peaks represent the 
steepest slope of the heating and cooling curves from 
Figure 7.  These peaks are used to identify the Curie 
temperature (Table 1). 
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4.4 IRM: Acquisition and Un-mixing 

 

4.4.1 IRM Acquisition 

 

None of the specimens from the first field season achieved saturation in a 1T field, 

reflective of a high-coercivity component such as hematite.  The pilot specimens were the only 

ones subjected to the full step-acquisition process of magnetization described above in Section 

3.4.4.  Figure 9 features intensity that is normalized to IRM1T to better compare magnetization 

acquisition behavior 

among specimens. Most 

specimens exhibited 

similar behavior (Fig. 

9), except for Locality 

2, which represented a 

slight divergence from 

the other samples with 

slightly lower 

coercivities.  Locality 2 

was composed of 

medium to coarse grain 

sand and was sampled 

Figure 9: IRM acquisition of pilot samples, normalized to IRM1T 

IRM acquisition was consistent across all specimens for Locality 1.  
Specimens from Locality 2 demonstrated a slight variation of acquisition 
relative to Locality 1. 
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from friable rock that had endured heavy mechanical weathering directly on Lake Superior’s 

shoreline. 

 

4.4.2 IRM Un-mixing 

 

The results of the IRM un-mixing are reported in terms of the peak coercivity of each 

skew-normal distribution (Bh), and the dispersion about that peak. Typically, a larger dispersion 

parameter (DP) indicates a wider range of magnetic grain sizes.  To calculate the fractional 

contribution of each component to the IRM, the integrated area under each component is 

calculated.  The observed contribution (OC) calculates the area under the measured data only.  

The extrapolated contribution (EC), extrapolates any non-saturated components to higher 

coercivities.  The OCmean and ECmean values listed in Table 3 that were returned from the 

MAX Un-Mix program represent the mean distribution about the modeled approximation of the 

peak coercivity distribution (Maxbauer et al., 2016).  In the present case, the EC is truer to the 

fractional amount of hematite present in the samples.  All results revealed two primary magnetic 

components for each individual specimen (Table 3, Fig. 10).  Locality 1: Component 1 had an 

average peak coercivity (Bh) of 1.71 (± 0.27) log10 mT (51.24 mT) and a DP of 0.27 (± 0.01) 

log10 mT (1.84 mT).  Component 2 demonstrated significantly higher coercivity, with a mean Bh 

of 2.80 (± 0.03) log10 mT (630.55 mT) and an average DP of 0.38 (± 0.01) log10 mT (2.40 mT).  

Locality 2: Component 1 had an average Bh =1.72 (± 0.003) log10 mT (52.38 mT) and an average 

DP = 0.27 (± 0.005) log10 mT (1.86 mT).  Component 2 had an average Bh = 2.85 (± 0.02) log10 

mT (714.50 mT) and an average DP = 0.36 (± 0.01) log10 mT (2.30 mT). 
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Figure 10: IRM un-mixing results 

These plots represent the first derivative of IRM acquisition that was 
obtained through 20 steps from 0-1 T.  The first derivative was taken 
using the MAX un-mix web application.  The curves were 
consistently representative of two magnetic components, one of low 
coercivity (Locality 1, C1avg = 51.3 mT; Locality 2, C1avg = 52.4 mT) 
and one of high coercivity (Locality 1, C2avg = 631.0 mT; Locality 2, 
C2avg = 708.0 mT). 
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The Locality 1 average contributions of the hard and soft component were 90.63% ± 

1.09% and 9.37% ± 1.09%, respectively.  The Locality 2 average contributions were 78.79% ± 

0.29% of the hard component and 21.21% ± 0.29% of the soft component.  Although the IRM 

un-mixing data give a detailed 

picture of coercivity 

distributions in the sample, the 

data collection process is 

lengthy and it was unfeasible to 

collect this data on a much 

larger sample set.  Subsequent 

samples from the second field 

season were not subjected to this 

detailed IRM un-mixing 

process.  Instead, the S-ratio, 

hard- and soft-IRM parameters 

seem to provide similar 

information on abundance and 

relative proportions of hard and 

soft minerals (Fig. 11).  

Although the correlations are 

imperfect, they generally follow 

the expected trends.  For 

example, the hard-IRM 

Figure 11: Correlation of components relative to extrapolated 
contribution mean 

Locality 1: (a.) The Hard-IRM correlates positively with the extrapolated 
contribution of Component 2 which was determined by the IRM un-
mixing curves.  (b.) The Soft-IRM correlates positively with the 
extrapolated contribution from Component 1.  Locality 2 for both 
comparisons represent their own trend. 

a. 

b. 
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compared with the extrapolated 

contribution from the hard 

mineral (Component 2), as 

determined by the IRM-un-

mixing process, demonstrated a 

positive trend (Fig. 11a).  The 

soft-IRM also featured a 

positive trend when compared 

relative to the extrapolated 

contribution of the soft mineral 

(Component 1) (Fig. 11b).  The S-ratio average was -0.33 ± -0.08 and was found to vary from       

-0.69 to -0.15.  These consistently negative S-ratio values support the significant presence of 

hard minerals, such as hematite, that was inferred from the inability of the samples to reach full 

saturation in a 1T field.  The positive correlation of the S-ratio to the extrapolated contribution of 

the soft mineral (Component 1) corroborated these observations since as the S-ratio became less 

negative there was a greater contribution from the soft minerals (Fig. 12).  The Hard-IRM 

average was 4.13 x 10-3 Am2/kg ± 0.001, the data varied from 3.02 x 10-3 Am2/kg to 6.81 x 10-3 

Am2/kg that again suggested that the hematite contribution is greater than that of magnetite since 

in both instances the hard-IRM was greater than the soft-IRM.  The soft-IRM average was 2.10 x 

10-3 Am2/kg ± 0.001.  The SIRM average was 6.23 x 10-3 Am2/kg ± 0.002. 

The hard- and soft-IRM were compared with overall bulk susceptibility.  The hard-IRM 

demonstrated a positive, linear trend and the soft-IRM did not display a clear correlation (Fig. 

13).  Overall, susceptibility seems to correlate with the magnetic remanence associated with 

Figure 12:  Correlation of S-ratio to extrapolated contribution from 
component 1 

The S-ratio correlates positively with the extrapolated contribution of 
Component 1. 
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hematite.  This correlation is important because it would suggest that the hematite and not the 

magnetite controls the outcrop susceptibility variations. 

 

 

4.5 Anisotropy of Magnetic Susceptibility (AMS) 

 

4.5.1 Anisotropy Shape 

 

Measured AMS eigenvalues of the pilot samples were used to determine the overall 

degree of anisotropy (P) by t1/t3, foliation (F) by t2/t3, and lineation (L) by t1/t2, at the specimen 

level.  The overall P was determined to be low with an average of 1.016, the average of F was 

1.006, and the average of L was 1.010.  When L and F are plotted on a Flinn diagram (Fig. 14), 

most data fall above the 1-1 line of increasing anisotropy indicative of a predominantly prolate 

shape.  Data that fall below the 1-1 line are representative of a dominantly oblate shape (Flinn, 

Figure 13: Hard and soft component correlation with overall bulk susceptibility 

The preliminary samples (from 2016 field season) demonstrated a positive linear trend between bulk susceptibility and 
the soft IRM component, however subsequent data (from 2017 field seasons) did not follow this correlation.  
Ultimately both data sets demonstrated a positive linear trend between the hard-IRM (Component 2) and bulk 
susceptibility.   
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1982).  The only bedding types that seemed to demonstrate a consistent shape are rippled bed-

forms which all fall within the range of prolate to triaxial shape, fine laminations that are very 

nearly isotropic, and mud-cracks which plot above the line of increasing anisotropy as a prolate 

shape.  

 

 

4.5.2 Anisotropy orientation 

 

Because the CHC bedding has a regional tilt of approximately 21° towards the N-NE, the 

resulting AMS data were corrected for tilt.  The AMS data, at the site level (Locality 1), place 

the minimum axes (V3) as clustered and smeared across the vertical stereoplot axis, trending 

Figure 14: Flinn diagram 

A prolate shape is plotted above the line of increasing anisotropy, while oblate shapes are plotted below.  Data that plots closest 
to the 1-1 line are triaxial. Although most bedding types did not exhibit a distinct trend between bed-form and shape anisotropy, 
rippled bedding ranged between triaxial and prolate shape, fine laminations were primarily isotropic, and mud-cracks were 
prolate. 
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mostly within the NW quadrant.  The maximum axes (V1) are mostly clustered within the SW 

and NE quadrants of the stereoplot within the horizontal plane (Fig. 15). Under moderate flow 

conditions, current direction is typically determined from the sense of imbrication of the V3 axes.  

However, the smearing of the V3 axes is not entirely in support of this method of interpretation 

and rather suggests that flow direction may have been turbulent and was likely moving 

perpendicular to the V1 axes (Tauxe, 2016).  Such an interpretation would suggest that a 

paleocurrent was moving either towards the NW or SE, with preference towards the NW based 

on the clustering of the V3 axes in the NW quadrant.  Previous paleocurrent measurements near 

Union Bay that were based on pebble imbrication, by Wolf and Huber (1973), provide a NE to 

NW paleocurrent direction.  Paleocurrent measurements based on bedding features within the 

Union Bay outcrops conducted by University of Wisconsin-Milwaukee graduate student, Jenny 

Ulbricht, depicts a NW paleo-current direction (personal communication, 2018), consistent with 

the AMS results.   

The AMS for CH16 pilot samples from Locality 2 (Fig. 16) was less well defined than 

that for Locality 1.  The data do not seem to indicate any discernable geographic trend.  This is 

likely related to the small number of samples and an overall low degree of anisotropy, which 

precludes making interpretations about the method and flow direction of deposition. 
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4.6 Stratigraphic Susceptibility 

 

 

The magnetic susceptibility values range from 2.27 x 10-4 to 4.68 x10-4 SI, and in general, 

susceptibility increases up section (Fig. 17).  Application of a simple 5-point running mean 

seems to highlight some periodicity in the data.  To investigate possible cyclicity in the data 

further, we can examine the spectral analysis (Fig. 18).  Only one peak with a frequency of 0.48 

m-1 (significance every 2.08 m) was statistically distinct from the background robust red noise 

estimation with >99% confidence.  Additionally, two broader peaks of lower confidence were 

Figure 17: Magnetic susceptibility increases up-section 

The boat launch at Union Bay State Park is representative of 0m.  Moving up section, susceptibility measurements 
were taken approximately every 0.47m for a total stratigraphic height of 56.4m. 
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present in the spectral output.  The broadest peak ranged between frequencies of 0.40 to 0.56 m-1 

(significance every 1.79 m - 2.5 m), and represents peaks statistically distinct with >90% 

confidence.  A peak with >80% confidence represents an approximate frequency of 0.17 m-1 

(significance every 5.88 m). 

 

Figure 18: Stratigraphic susceptibility power spectrum 

The data power spectrum (blue curve) is the result of the spectral analysis of magnetic susceptibility data 
collected in the field.  From the data power spectrum, the robust red noise (red curve) was estimated using 
the Monte Carlo simulation.  Peaks above the red noise curve are distinct from background noise.  However, 
peaks above the 80%, 85%, 90%, and 99% confidence limit (black dashed lines) are representative of 
significant peaks not related to background noise. 
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4.7 Outcrop Susceptibility Variation Grids 

 

4.7.1 Grid 1 

 

The purpose of both outcrop susceptibility grids was to demonstrate the amount of 

magnetic variability at a spatial scale smaller than the ~0.5 m spacing that was used for the entire 

Figure 19: Grid 1  

(a.) Grid 1 without any annotation.  (b.) Grid 1 with bedding contacts drawn in with black lines, bedding features are 
depicted with thin white lines.  (c.) Grid 1 magnetic susceptibility map and the annotations of depositional features.  
The susceptibility strength (SI units) is denoted by color.  Warm colors are indicative of high susceptibility while cool 
colors are representative of low susceptibility.  Poor contact in the upper right corner demonstrated extremely low 
susceptibility measurements.  Highest susceptibility measurements were associated with the lowest erosion bounded 
depositional unit of foresets and the upper erosion bounded unit of lower medium-grained sandstone.  The foresets near 
the base of the grid demonstrated grain size variability from upper fine- to lower medium-grains and is bounded by 
fine-grains.  The upper erosional bounded unit is composed of lower medium-grains and is bounded by fine-grains as 
well. 

a. b. c. 
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stratigraphic section.  The first grid is a 90 x 40 cm section featuring multiple sediment packages 

(Fig. 19).  This grid is located below a continuous erosional surface and contains a section of 

well sorted, fine- to medium-grained, cross-bedded, sublitharenite sandstone.  The base of the 

grid begins with dipping foresets, approximately 20 cm in height, of upper fine- to lower 

medium-grain sandstone.  The top of these foresets are truncated by a minor erosional surface.  

Above the erosional contact exists a trend of multiple, fining-upward packages of primarily 

horizontal laminations alternating from upper fine- to lower medium-grained sandstone.  

Eventually these laminations are truncated by an erosional contact and the overlying package 

transitions to an approximately 20 cm thick layer of lower medium-grained sandstone.  This 

thicker package of lower medium-grained sandstone is overlain by another package of fine-

grained sandstone with an erosional contact between the two sediment packages.   

The overall magnetic variability demonstrated within this grid was smaller than the range 

for the entire stratigraphic section (Fig. 17).  The magnetic susceptibility ranged from 2.08 x 10-4 

to 2.85 x 10-4 SI units.  Occasional areas of small cavities or cracks related to weathering and 

erosion on the outcrop surface prevented flush contact between the outcrop and the KT-10 

Magnetic Susceptibility Meter that seemed to correlate with lower susceptibility measurements.  

Higher susceptibility exists near the base of the grid, about 5 cm from the bottom to 

approximately 25 cm.  These higher susceptibility measurements do not extend across the entire 

width of the grid, but end about 25 cm across the extent of the grid, when moving from left to 

right.  Another area of higher susceptibility exists horizontally across the grid at a lateral height 

approximately 60 to 80 cm from the bottom.  This higher susceptibility extends across the entire 

40 cm width of the grid.  The higher susceptibility near the base of the grid is associated with the 

approximate location of the steeply dipping foresets with greater grain size variation, while the 
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higher susceptibility near the top of the grid is associated with the thicker band of lower medium-

grained sandstone. 

 

4.7.2 Grid 2 

 

 Grid 2 covers a greater surface area than that of the first grid.  Grid 2 outlines a section of 

cross-beds of a well-sorted, fine- to lower medium-grained, cross-bedded, sublitharenite 

sandstone section.  The bottom right side of Grid 2 exhibits steeply dipping, tangential foresets 

of trough cross-bedding (Fig. 20 & 21). This basal package has a top and bottom that are both 

truncated by erosional surfaces.  Most of the section within the grid is similar to the base.  

Moving upwards vertically, the lower to middle portion of the grid is comprised of multiple 

packages consisting of small depositional events.  Approximately 1 m from the top of the grid 

there is a shift in the mechanism of deposition to larger cross-beds that have a base marked by a 

mostly continuous, erosional surface that extends the length of the grid.  Approximately 45 cm 

from the top of the grid a second continuous erosional surface occurs.  This surface truncates the 

tops of the larger cross beds below it, while above this surface exists a second package of large 

cross beds.  These relatively large, erosional bounded cross beds near the top of this grid are 

interpreted as eolian dunes as they are well-sorted, predominantly fine-grained sandstone, and 

they are both sharply bounded by erosional tops and sharp lower contacts (Mountney, 2006; 

Langford and Chan, 1989).  All cross beds within this grid represent an overall fining upwards 

succession. 
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The magnetic susceptibility of Grid 2 was not measured as comprehensively as was done 

for Grid 1, rather three vertical and two 

horizontal transects were measured to estimate 

lateral and vertical variability within this 

section of the outcrop (Fig. 22).  The magnetic 

susceptibility varies from 1.86 x 10-4 to 3.18 x 

10-4 SI units vertically and 2.33 x10-4 to 3.30 x 

10-4 SI units horizontally.  The lowest values in 

this grid were influenced by poor contact 

between the susceptibility meter and the 

uneven surfaces of the outcrop.  This larger 

grid demonstrates a wider range of 

susceptibility than was detected in Grid 1.  
 

Figure 22: Comparison of transect susceptibility 
measurements from Grid 2 

The vertical transect measurements are denoted by 
various shades of green lines and the horizontal 

transects are denoted by various shades of blue lines.  
The horizontal transects are representative of overall 

greater susceptibility relative to the vertical transects.  
The vertical transects are more consistent with one 

another relative to the horizontal transects. 
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However, the observed range of susceptibility for Grid 2 is still smaller than what was measured 

throughout the entire section.  The vertical transects show similar susceptibility trends, 

suggesting roughly consistent along-bedding magnetic variability. This is suggestive of steady 

deposition longitudinally, over a scale of 3.10 m.  Meanwhile the horizontal transects are less 

similar to one another.  In general, the susceptibility lows seem to correspond to either erosional, 

bedding boundaries, or color changes while susceptibility highs existed between these 

boundaries (Fig. 21 & 22). 
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CHAPTER 5. DISCUSSION 

 

5.1 General Observations 

 

Magnetic characteristics identified in this study support the presence of two magnetic 

components and are overall consistent with the findings of Elmore and van der Voo (1982).  The 

IRM un-mixing results demonstrated two distinct magnetic components and temperature 

dependent susceptibility corroborated these observations.  The first component had an average 

coercivity of 51.24 mT and TC ranging from 560-590 ºC which is near the TC of pure magnetite 

(580ºC).  The second component had an average coercivity of 630.55 mT and TC ranging from 

630-680 ºC which is near the TC of hematite (675ºC).  Coercivities of the two CHC components 

can be compared with average magnetic coercivities identified by Egli (2004).  Egli’s (2004) 

modeled coercivities are based on IRM un-mixing data and include detrital magnetite (Bh=28.84 

mT, DP=2.29 mT), low-coercivity magneto-fossils (Bh=43.65 mT, DP=1.55 mT), hematite 

(Bh=199.53 mT, DP=1.86 mT), and goethite (Bh=1995.26 mT, DP=1.78 mT).  Our low-

coercivity component, interpreted to be detrital magnetite, has higher coercivity (Bh=51.24 mT, 

DP=1.84 mT) relative to the detrital magnetite component of Egli (2004) (Bh=28.84 mT, 

DP=2.29 mT). This suggests that our magnetite grain size is finer than that of typical detrital 

magnetite, but likely reflects a volcanic source for these sediments which contain SD-PSD 

(titano-)magnetite.  Our high-coercivity component also has relatively higher coercivity 

(Bh=630.55 mT, DP=2.40 mT) relative to the hematite component observed by Egli (2004) 

(Bh=199.53 mT, DP=1.86 mT).  Again, this is suggestive that our hematite component is 

predominantly fine-grained. 
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5.2 Evaluation of Susceptibility as a Deposition Signal 

 

Hematite undoubtedly dominates the remanence, and Elmore and van der Voo (1982) 

demonstrate that the hematite remanence direction is clearly younger than the magnetite 

direction, consistent with authigenic hematite.  Since the susceptibility signal is also dominated 

by hematite, the cyclical variations we observe may be unrelated to depositional processes or 

conditions considering that Elmore and van der Voo (1982) observed both detrital and authigenic 

hematite at Union Bay.  A secondary signal produced from the formation of completely new 

magnetic minerals could obscure the magnetic variations related to the original depositional 

signal.   

There are several arguments to be made, however, that the susceptibility reflects a 

depositional signal, even if the remanence does not.  First, Elmore and van der Voo (1982) 

maintained that the hematite remanence may in fact be a vector average of pre- and post-

depositional hematite.  Second, some hematite, as determined by Elmore and van der Voo 

(1982), is detrital and SP in size, which is too small a grain size to contribute to magnetic 

remanence; however, it will contribute to our susceptibility measurements.  Third, although some 

martitization is believed to have occurred post-deposition, the abundance of martite matters more 

than when it altered, and variations in abundance are presumably related to depositional 

variations.  This is because the martitization is an altered product of the detrital magnetite so any 

depositional cycles associated with the martite variation should remain, even after the 

transformation from magnetite to hematite.  The martite more or less acts as a placeholder for the 

original magnetite.  Similarly, any form of hematite that resulted from the replacement of a 

depositional mineral should retain the depositional signal.  Only if entirely new hematite 
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precipitates as the result of the transportation of ions into the matrix will the post-depositional 

hematite be of greater concern since it won’t be reflective of a detrital signal.  It is possible 

though that if new minerals are produced, their concentration may still reflect some aspect of the 

original depositional materials, such as porosity, which means that the original depositional 

signal could still be maintained.  Fourth, the paleocurrent direction determined from the AMS 

fabric is consistent with the direction determined from bedding features (see Sec. 4.5.2).  The 

anisotropy clearly reflects a depositional orientation.  However, one could imagine a secondary, 

authigenic hematite forming around depositionally aligned minerals, resulting in a distribution 

anisotropy (Hargraves et al., 1991).   

To examine in more detail the underlying physical variations that may be linked to 

susceptibility variations, the high-resolution susceptibility grids may be useful.  Grid 1, although 

too small to capture the periodicity of variability observed in the stratigraphy, did demonstrate 

susceptibility variations associated with shifts in grain size.  Lower medium grains, the coarser of 

the grain sizes present within this grid, and the foresets at the base of the grid, which represent a 

wider range of grain size variation than the rest of the grid, were both associated with higher 

susceptibility measurements.  These areas of high susceptibility may have been influenced by an 

influx of different source materials during deposition that had greater abundance of magnetic 

minerals.  Another explanation could be that the foresets at the base of the grid and the areas 

with larger grain sizes may have yielded greater interstitial space or secondary voids, possibly a 

result of well sorted grains, meaning low grain-to-grain contacts.  Greater voids would have 

provided more space within which authigenic, box-work hematite could grow and latch on to the 

matrix minerals that cemented the sandstone together during diagenesis.  Low susceptibility was 

observed within the middle of the grid between the top and bottom bounds of higher 
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susceptibility, and was associated with fine-grained sandstone.  The fine-grained sandstone likely 

represents less interstitial space meaning less secondary hematite could develop and thus 

presents with lower susceptibility measurements.  This line of thought would suggest that 

susceptibility variability is representative of a secondary trait of deposition, such as porosity 

rather than a changing influx of depositional magnetic materials.  

Grid 2 was again too small to capture the frequency of magnetic variability that was 

observed stratigraphically.  However rather than demonstrating magnetic variability associated 

with grain size as was observed for Grid 1, high and low susceptibility measurements seem to 

associate with bed-forms, color changes, or erosional boundaries.  Most of the lowest 

susceptibility measurements correlated well with erosional boundaries or color changes while 

high susceptibility measurements existed between these lows and were associated with large 

cross beds.  The susceptibility highs within the cross beds were likely influenced by an influx of 

material that either brought greater abundance of magnetic materials or provided greater void 

space for accumulation of authigenic hematite.  Meanwhile erosional boundaries potentially 

represent a shift to finer grain sizes of lower porosity as was represented by the measurements of 

low susceptibility.  Transect 1, demonstrated a low susceptibility measurement at a slight color 

change boundary (upper left of Fig. 21) that seemed to be expressed in Transect 2 & 3 along the 

same, laterally extending, color shift contact (Fig. 21).  The red bed color of the CHC has often 

been attributed to the fine-grained pigmentary hematite associated with either pre- or post-

depositional clay rims.  At this color boundary, the sandstone’s pigment shifted from a deep red 

to a light, bleached red which may indicate a changing concentration of pigmentary hematite, 

from high to low.  The color shift may be related to less dehydration of iron-bearing silicates 

within the dune feature that is formed in an arid environment, likely influenced by occasional 
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overland floods.  Since there is a lack of vegetation during the Precambrian, every rainfall event 

could produce overland flooding on an alluvial fan surface such as the setting for our locality.  If 

such rainfall events were related to climate, they could potentially influence increased or 

decreased dehydration of the iron-bearing silicates present at the site.   

Based on the observations made at the finer timescales captured by these grids, high and 

low susceptibilities seem to be closely related to bedding features and characteristics.  

Additionally, the general trend of successive, stratigraphic, susceptibility measurements saw an 

increase up-section.  This may be explained by the source material changing due to variations in 

erosion patterns over time.  Another interpretation is that dehydration weathering increased up-

section due to intensifying subaerial weathering conditions of alluvial sediment.  Increased 

weathering of the detrital material may have contributed to an increased presence of authigenic 

hematite that would also have recorded as higher susceptibility measurements. 

If chronology was better established for the facies or if there was an estimated 

accumulation rate, we could determine a true periodicity for our successional susceptibility 

measurements, which would allow for a more complete spectral analysis.  Unfortunately, the 

CHC formation occurs entirely within a normal magnetic polarity interval (Ojakangas et al., 

2001).  Without polarity boundaries or other clear indications of accumulation rates for our 

stratigraphic section, we are unable to conduct a full cyclostratigraphic analysis.  Nevertheless, if 

we accept that our susceptibility data plausibly reflect climatically-influenced variations, we may 

begin to consider what the cycles might represent.   

Our susceptibility spectral data output can be compared with Milankovitch cycles to 

assess the feasibility that the variations are orbitally-forced.  The frequencies determined from 

the spectral output indicated a spectral peak of >99% confidence at 0.48 m-1 or every 2.08 m.  
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This frequency would represent accumulation rates for short eccentricity (100 kyr) at 0.021 

mm/yr, long eccentricity (413 kyr) at 0.005 mm/yr, precession (26 kyr) at 0.080 mm/yr, and 

obliquity (41 kyr) at 0.051 mm/yr.  Our peaks of lower confidence levels were also compared 

with the Milankovitch intervals, and these calculated accumulation rates were comparable to 

what was calculated for the >99% confidence peak.  An example of a sedimentation rate 

averaged over the entire lake basin of the East African rift lake, Lake Tanganyika, was found to 

be approximately 0.477 mm/yr (Cohen et al., 1993).  Whereas sediments of the Precambrian Belt 

Basin of the Northwestern United States fed into a sea and are estimated to have had a 

sedimentation rate of approximately 0.051 mm/yr (Harrison, 1972).  Although the rates from this 

study (assuming orbital forcing) don’t seem completely unreasonable when compared with the 

proposed Precambrian Belt Basin sedimentation rates, due to the uncertainty of the depositional 

timescale of our section it is impulsive to consider them as true sedimentation rates.   

Additionally, the CHC sediment accumulation was in a lacustrine setting, not a marine 

environment.  Alternatively, it is possible that these measured frequencies are representative of 

shorter period climatic fluctuations of the Precambrian.  Modern analogs for shorter climatic 

fluctuations that affect temperature, rainfall, and degree of humidity or aridity include the El 

Niño Southern Oscillation (ENSO), which occurs over brief intervals of approximately nine to 

twelve months at a time every three to seven years, on average (Malone et al., 2014).  The 

Pacific Decadal Oscillation is similar to ENSO, but has the ability to persist for extended periods 

from 15-20 years or 50-70 years at a time (Mantua and Hare, 2002). 

The CHC formation of Union Bay presented many complications, however we were able 

to distinguish some cyclicity from these Precambrian, fluvial red beds using outcrop based, 

magnetic susceptibility.  To tease out the relationship that authigenic and detrital hematite shares 
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with the depositional fabric, future work could emphasize detailed petrologic and provenance 

studies.  To further determine if magnetic susceptibility measurements of fluvial red beds do 

indeed maintain frequencies related to astronomical cycles, a proposed study needs to target a 

section that has well established chronostratigraphy.  For example, the Triassic-Jurassic Period 

saw the development of the Pangean basin between modern day North America and Africa 

(Olsen et al., 2003).  The rift basin deposits from this time are exposed throughout much of the 

United States, Morocco, and parts of Canada (Olsen et al., 2003).  The Bigoudine Formation in 

the Argana Basin of Morocco is one of these exposures (Olsen et al., 2003).  It has been well 

dated thanks to its correlation with the Newark basin, of the United States, and the Newark 

basin’s well established geomagnetic polarity timescale (Et-Touhami et al., 2008).  While 

magnetocyclostratigraphic studies have been conducted on the Newark Basin (Olsen et al., 

2003), such a study would benefit refinement of timescales within the Bigoudine Formation as 

well.  Additionally, the certainty of geologic time for this unit along with a comparable study 

already developed from an adjacent portion of the same basin provides an excellent base from 

which to test for astronomically forced cycles maintained by deposition.   
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CHAPTER 6. CONCLUSIONS 

 

Two magnetic components were found in the CHC at Union Bay: (titano-)magnetite and (titano-

)hematite.  The low coercivity, soft magnetic component likely represents fine-grained 

titanomagnetite to magnetite which accounts for the least dominant contribution to magnetic 

susceptibility.  The high coercivity, hard magnetic component likely represents fine-grained 

hematite or titanohematite, which correlates strongly with magnetic susceptibility.  It was 

demonstrated that these two components could be quantified using IRM un-mixing, IRM 

backfield, and c(T).  The bulk susceptibility correlates positively with the hard-magnetic 

component, suggesting that hematite contributes most strongly to outcrop magnetic susceptibility 

measurements.  Specimens have a low degree of magnetic anisotropy, and the AMS fabric is 

primarily prolate and lineated.  The AMS magnetic fabric suggests that a paleocurrent trending 

to the NW influenced the depositional orientation of the magnetic mineralogy at this site and was 

found to correspond well with prior studies that observed bedding features or clast imbrication to 

determine flow orientation.  The correspondence between AMS fabric and paleocurrent 

measurements supports the interpretation that hematite orientation is representative of 

depositional conditions.  Stratigraphic susceptibility increases up-section and following a 

spectral analysis, the data demonstrate several significant frequencies of variation, most 

prominently a 2.08 m cycle at >99% confidence.  Since the depositional timescale of our section 

is uncertain, it is not possible to conclusively correlate the observed, significant periodicities 

with orbital forcing.  Meanwhile, smaller-scale susceptibility grids represent a smaller overall 

range of magnetic susceptibility and demonstrate variations at spatial scales smaller than what 

was captured in the stratigraphic section.  The highest susceptibility measurements taken at the 
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outcrop are associated with large cross beds and relatively larger, physical grain sizes.  The 

lowest susceptibility measurements correspond with erosional boundaries and small physical 

grain sizes.  Whether or not susceptibility variations correlate with climate, they still likely relate 

to a variety of depositional properties of the sedimentary facies.  Ultimately, this study concludes 

that magnetic characteristics of deep time, fluvial red beds can represent depositional variations.  

Therefore, these deposits are potential candidates that could be used to further constrain 

timescales of variation during the Precambrian provided absolute depositional timescales have 

been established for the unit in question.  
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APPENDIX:  

Empty Tube Data Used for Furnace Correction 

 

Figure 23: Empty tube used to measure c(T) in furnace attachment of Kappabridge 

The magnetic susceptibility of the blank tube that was used to measure the furnace correction for magnetic 
susceptibility of CH16 c(T).   
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